Acta Psychologica Sinica ›› 2026, Vol. 58 ›› Issue (2): 323-335.doi: 10.3724/SP.J.1041.2026.0323
• Reports of Empirical Studies • Previous Articles Next Articles
PAN Yun1,2(
), YANG Huanyu1,3(
), JIA Liangzhi1, ZHU Jun1, YU Fangwen1, ZHANG Di1, YANG Ping1
Published:2026-02-25
Online:2025-12-03
Contact:
PAN Yun,YANG Huanyu
E-mail:panyun129@163.com;1320961328@qq.com
PAN Yun, YANG Huanyu, JIA Liangzhi, ZHU Jun, YU Fangwen, ZHANG Di, YANG Ping. (2026). The influence of intrinsic and extrinsic grouping cues on numerosity perception of groupitizing: Evidence from fMRI. Acta Psychologica Sinica, 58(2), 323-335.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2026.0323
Figure 1. Examples of Stimulus Materials. A-C: Distribution diagrams for common region, connectedness, and proximity stimuli; D-G: Schematic diagrams of extrinsic and intrinsic grouping cue stimuli. For all cues, the left side shows the grouped condition and the right side the ungrouped condition (for clarity, stimuli are not drawn to scale in the figure). Color versions are available in the electronic edition. The same applies below.
Figure 3. Perceptual Accuracy (A) and Reaction Time (B) Results for Condition and Grouping Cue. Note. *** p < 0.001, ** p < 0.01, * p < 0.05, ns not significant. Error bars represent standard error of the mean.
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| grouped conditions | ||||||
| IPS/AG/SMG | Left | 707 | -30 | -55 | 42 | 5.76 |
| ITG/LG | Left | 408 | -51 | -58 | -10 | 5.64 |
| MFG | Left | 173 | -51 | 8 | 32 | 5.50 |
| IPS | Right | 154 | 21 | -58 | 42 | 5.76 |
| ungrouped conditions | ||||||
| IPS/AG | Right | 128 | 30 | -61 | 54 | 4.53 |
| IPS/AG/SPL | Left | 79 | -33 | -55 | 52 | 4.26 |
| SMG | Left | 40 | -45 | -22 | 52 | 5.26 |
| MFG | Left | 34 | -45 | 5 | 32 | 3.98 |
| LG | Right | 33 | 9 | -88 | -6 | 4.38 |
| SMA | Right | 24 | -6 | 5 | 56 | 4.18 |
Table 1 Brain regions activated in the grouped and ungrouped conditions from whole-brain analysis
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| grouped conditions | ||||||
| IPS/AG/SMG | Left | 707 | -30 | -55 | 42 | 5.76 |
| ITG/LG | Left | 408 | -51 | -58 | -10 | 5.64 |
| MFG | Left | 173 | -51 | 8 | 32 | 5.50 |
| IPS | Right | 154 | 21 | -58 | 42 | 5.76 |
| ungrouped conditions | ||||||
| IPS/AG | Right | 128 | 30 | -61 | 54 | 4.53 |
| IPS/AG/SPL | Left | 79 | -33 | -55 | 52 | 4.26 |
| SMG | Left | 40 | -45 | -22 | 52 | 5.26 |
| MFG | Left | 34 | -45 | 5 | 32 | 3.98 |
| LG | Right | 33 | 9 | -88 | -6 | 4.38 |
| SMA | Right | 24 | -6 | 5 | 56 | 4.18 |
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| IPS/AG | Left | 185 | -36 | -52 | 54 | 6.40 |
| ITG | Left | 163 | -42 | -58 | -14 | 6.14 |
| SMG/AG | Right | 87 | 57 | -40 | 30 | 4.79 |
| SMG | Left | 48 | -51 | -40 | 40 | 4.67 |
| LG | Right | 38 | 3 | -61 | -8 | 6.03 |
Table 2 Differential brain activation for Grouped Condition > Ungrouped Condition
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| IPS/AG | Left | 185 | -36 | -52 | 54 | 6.40 |
| ITG | Left | 163 | -42 | -58 | -14 | 6.14 |
| SMG/AG | Right | 87 | 57 | -40 | 30 | 4.79 |
| SMG | Left | 48 | -51 | -40 | 40 | 4.67 |
| LG | Right | 38 | 3 | -61 | -8 | 6.03 |
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| Extrinsic grouping cues | ||||||
| MFG/LG | Right | 2297 | 24 | -58 | 42 | 6.30 |
| IPS/AG/SMG/ITG | Left | 1489 | -21 | -50 | 40 | 6.12 |
| MFG | Left | 510 | -45 | 5 | 30 | 6.05 |
| Postcentral gyrus | Left | 247 | 48 | 5 | 32 | 5.39 |
| SMA | Left | 192 | -6 | 8 | 54 | 5.10 |
| INS/SPL | Right | 124 | 33 | 20 | 6 | 5.65 |
| Intrinsic grouping cues | ||||||
| IPS/SMG/AG | Left | 345 | -36 | -37 | 36 | 5.83 |
| IPS/AG/SMG | Right | 267 | 36 | -55 | 50 | 6.56 |
| INS | Left | 170 | -27 | 14 | 14 | 4.80 |
| MFG/SMG | Left | 134 | -45 | -1 | 32 | 4.83 |
| SMA | Left | 120 | -6 | -1 | 56 | 4.79 |
Table 3 Brain regions activated for extrinsic and intrinsic grouping cues from whole-brain analysis
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| Extrinsic grouping cues | ||||||
| MFG/LG | Right | 2297 | 24 | -58 | 42 | 6.30 |
| IPS/AG/SMG/ITG | Left | 1489 | -21 | -50 | 40 | 6.12 |
| MFG | Left | 510 | -45 | 5 | 30 | 6.05 |
| Postcentral gyrus | Left | 247 | 48 | 5 | 32 | 5.39 |
| SMA | Left | 192 | -6 | 8 | 54 | 5.10 |
| INS/SPL | Right | 124 | 33 | 20 | 6 | 5.65 |
| Intrinsic grouping cues | ||||||
| IPS/SMG/AG | Left | 345 | -36 | -37 | 36 | 5.83 |
| IPS/AG/SMG | Right | 267 | 36 | -55 | 50 | 6.56 |
| INS | Left | 170 | -27 | 14 | 14 | 4.80 |
| MFG/SMG | Left | 134 | -45 | -1 | 32 | 4.83 |
| SMA | Left | 120 | -6 | -1 | 56 | 4.79 |
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| SMA/MFG/IPS | Left | 1037 | -30 | 44 | 38 | 5.76 |
| ITG | Left | 233 | -53 | -23 | -18 | 5.86 |
| ITG | Right | 221 | 45 | -31 | -8 | 5.94 |
| LG | Left | 59 | -12 | -85 | -16 | 5.64 |
Table 4 Differential brain activation for extrinsic grouping cues > intrinsic grouping cues
| Activated Brain Regions | Hemisphere | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| SMA/MFG/IPS | Left | 1037 | -30 | 44 | 38 | 5.76 |
| ITG | Left | 233 | -53 | -23 | -18 | 5.86 |
| ITG | Right | 221 | 45 | -31 | -8 | 5.94 |
| LG | Left | 59 | -12 | -85 | -16 | 5.64 |
| Seed | Region | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| Left-IPS | Right-IPS | 265 | 30 | -69 | 36 | 5.85 |
| Right-AG | 56 | 42 | -55 | 18 | 5.32 | |
| Right-SFG | 102 | 33 | 50 | 11 | 5.28 | |
| Left-IPS | 89 | -36 | -58 | 50 | 6.99 | |
Table 5 Functional connectivity where the grouped condition is stronger than the ungrouped condition, with the left IPS as the seed point.
| Seed | Region | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| Left-IPS | Right-IPS | 265 | 30 | -69 | 36 | 5.85 |
| Right-AG | 56 | 42 | -55 | 18 | 5.32 | |
| Right-SFG | 102 | 33 | 50 | 11 | 5.28 | |
| Left-IPS | 89 | -36 | -58 | 50 | 6.99 | |
Figure 6. A: gPPI analysis results for the grouped condition minus the ungrouped condition, with the left IPS as the seed point; B: gPPI analysis results for the external grouping cue minus the internal grouping cue, with the left ITG as the seed point.
| Seed | Region | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| Left-ITG | Left-IPS | 132 | -33 | -65 | 32 | 6.35 |
| Left-LG | 169 | -42 | -45 | 18 | 8.52 | |
| Left-SFG | 256 | -36 | 43 | 10 | 5.32 | |
| Left-ITG | 152 | -52 | -64 | -18 | 6.35 | |
| Right-ITG | 53 | 54 | -58 | -14 | 5.65 | |
Table 6 Functional connectivity where the external grouping cue is stronger than the internal grouping cue, with the L-ITG as the seed point.
| Seed | Region | Number of Voxels | MNI | t | ||
|---|---|---|---|---|---|---|
| x | y | z | ||||
| Left-ITG | Left-IPS | 132 | -33 | -65 | 32 | 6.35 |
| Left-LG | 169 | -42 | -45 | 18 | 8.52 | |
| Left-SFG | 256 | -36 | 43 | 10 | 5.32 | |
| Left-ITG | 152 | -52 | -64 | -18 | 6.35 | |
| Right-ITG | 53 | 54 | -58 | -14 | 5.65 | |
| [1] |
Anobile, G., Castaldi, E., Maldonado Moscoso, P. A., Arrighi, R., & Burr, D. (2021). Groupitizing improves estimation of numerosity of auditory sequences. Frontiers in Human Neuroscience, 15, 687321. http://doi.org/10.3389/fnhum.2021.687321
doi: 10.3389/fnhum.2021.687321 URL |
| [2] |
Anobile, G., Castaldi, E., Moscoso, P. A. M., Burr, D. C., & Arrighi, R. (2020). “Groupitizing”: A strategy for numerosity estimation. Scientific Reports, 10(1), 13436. http://doi.org/10.1038/s41598-020-68.111-1
doi: 10.1038/s41598-020-68111-1 URL |
| [3] |
Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., & Pascual-Leone, J. (2018). Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience, 30, 239-250. http://doi.org/10.1016/j.dcn.2017.08.002
doi: S1878-9293(17)30010-5 URL pmid: 28844728 |
| [4] |
Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425-428. http://doi.org/10.1016/j.cub.2008.02.052
doi: 10.1016/j.cub.2008.02.052 URL pmid: 18342507 |
| [5] |
Cai, Y., Hofstetter, S., Harvey, B. M., & Dumoulin, S. O. (2022). Attention drives human numerosity-selective responses. Cell Reports, 39(13), 111005. http://doi.org/10.1016/j.celrep.2022.111005
doi: 10.1016/j.celrep.2022.111005 URL |
| [6] |
Cai, Y., Hofstetter, S., van Dijk, J., Zuiderbaan, W., van der Zwaag, W., Harvey, B. M., & Dumoulin, S. O. (2021). Topographic numerosity maps cover subitizing and estimation ranges. Nature Communications, 12(1), 3374. http://doi.org/10.1038/s41467-021-23785-7
doi: 10.1038/s41467-021-23785-7 URL pmid: 34099735 |
| [7] |
Cao, M., Wang, J., Dai, Z., Cao, X., Jiang, L., Fan, F., ... He, Y. (2014). Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience, 7, 76-93. http://doi.org/10.1016/j.dcn.2013.11.004
doi: 10.1016/j.dcn.2013.11.004 URL pmid: 24333927 |
| [8] |
Caponi, C., Maldonado, M. P., Castaldi, E., Arrighi, R., & Grasso, P. A. (2023). EEG signature of grouping strategies in numerosity perception. Frontiers in Neuroscience, 17, 1190317. http://doi.org/10.3389/fnins.2023.1190317
doi: 10.3389/fnins.2023.1190317 URL |
| [9] |
Chen, L. (1982). Topological structure in visual perception. Science, 218, 699-700. http://doi.org/10.1126/science.7134969
URL pmid: 7134969 |
| [10] | Chen, L. (2017). The three cornerstones of cognitive science. Fundamental Research, 31(3), 209-210. http://10.16262/j.cnki.1000-8217.2017.03.001 |
| [11] |
Cicchini, G. M., Anobile, G., Burr, D. C., Marchesini, P., & Arrighi, R. (2023). The role of non-numerical information in the perception of temporal numerosity. Frontiers in Psychology, 14, 1197064. http://doi.org/10.3389/fpsyg.2023.1197064
doi: 10.3389/fpsyg.2023.1197064 URL |
| [12] |
Ciccione, L., & Dehaene, S. (2020). Grouping mechanisms in numerosity perception. Open Mind, 4, 102-118. http://doi.org/10.1162/opmi_a_00037
doi: 10.1162/opmi_a_00037 URL |
| [13] |
Czarnecka, M., Raczy, K., Szewczyk, J., Paplinska, M., Jednorog, K., Marchewka, A., ... Szwed, M. (2023). Overlapping but separate number representations in the intraparietal sulcus-Probing format- and modality-independence in sighted Braille readers. Cortex, 162, 65-80. http://doi.org/10.1016/j.cortex.2023.01.011
doi: 10.1016/j.cortex.2023.01.011 URL pmid: 37003099 |
| [14] |
Dehaene, S., & Changeux, J. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390-407. http://doi.org/10.1162/jocn.1993.5.4.390
doi: 10.1162/jocn.1993.5.4.390 URL pmid: 23964915 |
| [15] |
Fornaciai, M., & Park, J. (2018). Early numerosity encoding in visual cortex is not sufficient for the representation of numerical magnitude. Journal of Cognitive Neuroscience, 30(12), 1788-1802. http://doi.org/10.1162/jocn_a_01320
doi: 10.1162/jocn_a_01320 URL pmid: 30063175 |
| [16] |
Grasso, P. A., Anobile, G., Arrighi, R., Burr, D. C., & Cicchini, G. M. (2022). Numerosity perception is tuned to salient environmental features. iScience, 25(4), 104104. http://doi.org/https://doi.org/10.1016/j.isci.2022.104104
doi: 10.1016/j.isci.2022.104104 URL |
| [17] |
Grotheer, M., Herrmann, K., & Kovács, G. (2016). Neuroimaging evidence of a bilateral representation for visually presented numbers. The Journal of Neuroscience, 36(1), 88-97. http://doi.org/10.1523/JNEUROSCI.2129-15.2016
doi: 10.1523/JNEUROSCI.2129-15.2016 URL |
| [18] |
Guillaume, M., Roy, E., Van Rinsveld, A., Starkey, G., Uncapher, M., & Mccandliss, B. (2022). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence. Child Development, 94(2), 335-347. http://doi.org/10.1111/cdev.13859
doi: 10.1111/cdev.13859 URL pmid: 36484357 |
| [19] |
Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123-1126. http://doi.org/10.1126/science.1239052
doi: 10.1126/science.1239052 URL pmid: 24009396 |
| [20] |
He, L., Zhang, J., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review, 16(3), 509-517. http://doi.org/10.3758/PBR.16.3.509
doi: 10.3758/PBR.16.3.509 URL |
| [21] | He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5647-E5655. http://doi.org/10.1073/pnas.1512408112 |
| [22] | He, S. (2008). Holes, objects, and the left hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1103-1104. http://doi.org/10.1073/pnas.0710631105 |
| [23] |
Kluth, T., & Zetzsche, C. (2016). Numerosity as a topological invariant. Journal of Vision, 16(3), 30. http://doi.org/10.1167/16.3.30
doi: 10.1167/16.3.30 URL pmid: 26913622 |
| [24] |
Kragel, P., Čeko, M., Theriault, J., Chen, D., Satpute, A., Wald, L., ... Wager, T. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109(15), 2404-2412. http://doi.org/10.1016/j.neuron.2021.06.001
doi: 10.1016/j.neuron.2021.06.001 URL pmid: 34166604 |
| [25] | Lan, Z., & Chen, L. (1998). An topological perception approach to the study of hemispheric asymmetry. Journal of Psychological Science, (3), 205-208. http://10.16719/j.cnki.1671-6981.1998.03.004 |
| [26] |
Liu, W., Zhang, Z., & Zhao, Y. (2012). Numerosity adaptation effect on the basis of perceived numerosity. Acta Psychologica Sinica, 44(10), 1297-1308.
doi: 10.3724/SP.J.1041.2012.01297 |
| [27] |
Luna, D., Villalba-Garcia, C., Montoro, P. R., & Hinojosa, J. A. (2016). Dominance dynamics of competition between intrinsic and extrinsic grouping cues. Acta Psychologica, 170, 146-154. http://doi.org/10.1016/j.actpsy.2016.07.001
doi: 10.1016/j.actpsy.2016.07.001 URL pmid: 27423888 |
| [28] |
Luna, D., & Montoro, P. R. (2011). Interactions between intrinsic principles of similarity and proximity and extrinsic principle of common region in visual perception. Perception, 40(12), 1467-1477. http://doi.org/10.1068/p7086
URL pmid: 22474765 |
| [29] |
Maldonado Moscoso, P. A., Castaldi, E., Burr, D. C., Arrighi, R., & Anobile, G. (2020). Grouping strategies in number estimation extend the subitizing range. Scientific Reports, 10, 14979. http://doi.org/10.1038/s41598-020-71871-5
doi: 10.1038/s41598-020-71871-5 URL pmid: 32917941 |
| [30] |
Maldonado, M. P., Greenlee, M. W., Anobile, G., Arrighi, R., Burr, D. C., & Castaldi, E. (2021). Groupitizing modifies neural coding of numerosity. Human Brain Mapping, 43, 915-928. http://doi.org/10.1002/hbm.25694
doi: 10.1002/hbm.25694 URL pmid: 34877718 |
| [31] |
Malone, S. A., Pritchard, V. E., Heron-Delaney, M., Burgoyne, K., Lervåg, A., & Hulme, C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220-231. http://doi.org/10.1016/j.jecp.2019.02.009
doi: S0022-0965(18)30141-3 URL pmid: 30935590 |
| [32] |
Montoro, P. R., Villalba-García, C., Luna, D., & Hinojosa, J. A. (2017). Common region wins the competition between extrinsic grouping cues: Evidence from a task without explicit attention to grouping. Psychonomic Bulletin & Review, 24(6), 1856-1861. http://doi.org/10.3758/s13423-017-1254-3
doi: 10.3758/s13423-017-1254-3 URL |
| [33] |
Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24(3), 436-447.
pmid: 1516361 |
| [34] |
Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping. Perception & Psychophysics, 69(1), 68-78.
doi: 10.3758/BF03194454 URL |
| [35] |
Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin Review, 1, 29-55. http://doi.org/10.3758/BF03200760
doi: 10.3758/BF03200760 URL |
| [36] |
Pan, Y., Yang, H., Li, M., Zhang, J., & Cui, L. (2021). Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues. Scientific Reports, 11(1), 17605. http://doi.org/10.1038/s41598-021-96944-x
doi: 10.1038/s41598-021-96944-x URL pmid: 34475472 |
| [37] |
Pennock, I. M. L., Schmidt, T. T., Zorbek, D., & Blankenburg, F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study. Human Brain Mapping, 42(9), 2778-2789. http://doi.org/10.1002/hbm.25402
doi: 10.1002/hbm.25402 URL pmid: 33694232 |
| [38] |
Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435-446. http://doi.org/10.1006/nimg.2001.0980
URL pmid: 11798277 |
| [39] |
Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. Neuroscientist, 15(3), 261-273. http://doi.org/10.1177/1073858409333073
doi: 10.1177/1073858409333073 URL pmid: 19436075 |
| [40] |
Polspoel, B., Peters, L., Vandermosten, M., & De Smedt, B. (2017). Strategy over operation: Neural activation in subtraction and multiplication during fact retrieval and procedural strategy use in children. Human Brain Mapping, 38(9), 4657-4670. http://doi.org/10.1002/hbm.23691
doi: 10.1002/hbm.23691 URL pmid: 28626967 |
| [41] |
Simon, T., & Vaishnavi, S. (1996). Subitizing and counting depend on different attentional mechanisms: Evidence from visual enumeration in afterimages. Perception & Psychophysics, 58(6), 915-926. http://doi.org/10.3758/BF03205493
doi: 10.3758/BF03205493 URL |
| [42] |
Skagenholt, M., Skagerlund, K., & Träff, U. (2021). Neurodevelopmental differences in child and adult number processing: An fMRI-based validation of the triple code model. Developmental Cognitive Neuroscience, 48, 100933. http://doi.org/10.1016/j.dcn.2021.100933
doi: 10.1016/j.dcn.2021.100933 URL |
| [43] |
Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120-137. http://doi.org/10.1016/j.jecp.2014.03.006
doi: 10.1016/j.jecp.2014.03.006 URL |
| [44] |
Tschentscher, N., & Hauk, O. (2014). How are things adding up? Neural differences between arithmetic operations are due to general problem solving strategies. Neuroimage, 92, 369-380. http://doi.org/10.1016/j.neuroimage.2014.01.061
doi: 10.1016/j.neuroimage.2014.01.061 URL pmid: 24525170 |
| [45] |
Tsouli, A., Harvey, B. M., Hofstetter, S., Cai, Y., van der Smagt, M. J., Te, P. S., & Dumoulin, S. O. (2022). The role of neural tuning in quantity perception. Trends in Cognitive Sciences, 26(1), 11-24. http://doi.org/10.1016/j.tics.2021.10.004
doi: 10.1016/j.tics.2021.10.004 URL |
| [46] |
Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488. doi: https://doi.org/10.1016/j.tics.2003.09.002
pmid: 14585444 |
| [47] | Wang, B., Zhou, T. G., Zhuo, Y., & Chen, L. (2007). Global topological dominance in the left hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 21014-21019. http://doi.org/10.1073/pnas.0709664104 |
| [48] |
Wang, L., Li, M., Yang, T., Wang, L., & Zhou, X. (2022). Mathematics meets science in the brain. Cerebral Cortex, 32(1), 123-136. http://doi.org/10.1093/cercor/bhab198
doi: 10.1093/cercor/bhab198 URL |
| [49] |
Wang, W., Zhou, T., Chen, L., & Huang, Y. (2023). A subcortical magnocellular pathway is responsible for the fast processing of topological properties of objects: A transcranial magnetic stimulation study. Human Brain Mapping, 44(4), 1617-1628. http://doi.org/10.1002/hbm.26162
doi: 10.1002/hbm.v44.4 URL |
| [50] | Wege, T., Trezise, K., & Inglis, M. (2021). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays. Psychonomic Bulletin & Review, 29. http://doi.org/10.3758/s13423-021-02015-7 |
| [51] |
Whalen, J., Gallistel, C. R., & Gelman, R. (2016). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10(2), 130-137. http://doi.org/10.1111/1467-9280.00120
doi: 10.1111/1467-9280.00120 URL |
| [52] |
Wurm, M. F., Tagliabue, C. F., & Mazza, V. (2021). Decoding location-specific and location-invariant stages of numerosity processing in subitizing. European Journal of Neuroscience, 54(3), 4971-4984. http://doi.org/10.1111/ejn.15352
doi: 10.1111/ejn.15352 URL pmid: 34128271 |
| [53] |
Yeo, D., Wilkey, E., & Price, G. (2017). The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 78, 145-160. http://doi.org/10.1016/j.neubiorev.2017.04.027
doi: 10.1016/j.neubiorev.2017.04.027 URL |
| [54] |
Zhang, D., Zhou, L., Yang, A., Li, S., Chang, C., Liu, J., & Zhou, K. (2023). A connectome-based neuromarker of nonverbal number acuity and arithmetic skills. Cerebral Cortex, 33(3), 881-894. http://doi.org/10.1093/cercor/bhac108
doi: 10.1093/cercor/bhac108 URL |
| [55] | Zhou, K., Luo, H., Zhou, T., Zhuo, Y., & Chen, L. (2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Sciences, 107(50), 21920-21924. http://doi.org/10.1073/pnas.1010919108 |
| [56] | Zhu, Y. (2005). Chen Lin’s theory of topological perception. Journal of Psychological Science, 28(5), 1031-1034. http://10.16719/j.cnki.1671-6981.2005.05.002 |
| [1] |
MEI Yang,LIANG Pei-Peng,LU Sheng-Fu,ZHONG Ning,LI Kun-Cheng,YANG Yan-Hui . Neural Mechanism of Figural Inductive Reasoning: An fMRI Study [J]. , 2010, 42(04): 496-506. |
| [2] | Tang Yiyuan 1,2 , Zhang Wutian 2 , Ma Lin 3 , Weng Xuchu 2 , Li Dejun 3 , He Hua 4 , Jia Fucang 2 ( 1 Institute of Neuroinformatics, Dalian University of Technology, Dalian 116023) ( 2 Institute of Psychology, the. THE LATERALITY OF BRAIN FUNCTION IN SILENT READING OF CHINESE WORDS REVEALED BY FMRI [J]. , 2002, 34(04): 3-7. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||